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Types of Refinement

AMR approaches

Unstructured

Mesh distortion
Point-wise structured
refinement
Block structured

The next four lectures focus on block-structured refinement for
time-dependent problems

Basic ideas
Multi-physics applications

Implementation issues
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Overview of Lectures
Day 1:

1) AMR for Hyperbolic Conservation Laws ("Hello World")

Preliminaries
Key AMR ideas

Software / Parallel Implementation

2) Extension to More General Systems

Incompressible Navier-Stokes
– Fractional Step Scheme

1-D AMR for “classical” PDE’s
– hyperbolic
– elliptic
– parabolic

Spatial accuracy considerations
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Overview of Lectures (p.2)
Day 2:

3) IAMR and Extension to Multiphysics

Incompressible AMR

Software to support IAMR

Multiphysics applications
– LMC (Low Mach Number Combustion)
– AMAR (Adaptive Mesh and Algorithm Refinement)

4) Geometry

Embedded Boundary

Software to support EB
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AMR for Conservation Laws
Consider the 2-D hyperbolic conservation law

Ut + Fx + Gy = 0

where
F = F(U),G = G(U)

Basic discretization:
Finite volume approach with cell-centered data

Flux-based representation of conservation law

Explicit in time update

Un+1
− Un

∆t
=

F
n+ 1

2

i−1/2,j
− F

n+ 1
2

i+1/2,j

∆x
+

G
n+ 1

2

i,j−1/2
− G

n+ 1
2

i,j+1/2

∆y

Numerical fluxes computed from data at tn in neighborhood of edge

Bell Lecture 1 – p. 5/22



Basic AMR Issues
Basic design concepts for AMR

Cover regions requiring high
resolution with finer grids

Use higher-order upwind
methodology for regular grids to
integrate PDE

Refine in space and time
Maintain CFL across levels
Subcycle in time

Issues

Generation of grid hierarchy

How to integrate on hierarchy
Integration of data on a patch
Synchronization of levels

Shock Reflection

Original references:

2-D: Berger and Colella, JCP 1989

3-D: Bell,Berger,Saltzman and Welcome,
JCP 1994
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Building the initial grid hierarchy
Fill data at level 0
Estimate where refinement is needed and buffer
Group cells into patches according to a prescribed “grid efficiency”
and refine ⇒ B1, ..., Bn (Berger and Rigoustos, 1991)

Repeat for next level and adjust for proper nesting

Efficiency = 0.5 Efficiency = 0.7 Efficiency = 0.9
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Adaptive integration algorithm
Consider two levels, coarse and fine, with refinement ratio r

∆xf = ∆xc/r , ∆tf = ∆tc/r,

To integrate

Advance coarse grids in time tc → tc + ∆tc

Advance fine grids in time r times

Synchronize coarse and fine data

Extend recursively to arbitrary number of refinement levels.
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Integrating on grid patch
How do you integrate a patch of data at level `?

Obtain boundary data needed to call integrator on uniform grid of data.

Assume explicit scheme with stencil width sd

Enlarge patch by sd cells in each
direction and fill with data using

– Physical boundary conditions
– Other patches at the same

level
– Coarse grid data

Advance grid in time t → t + ∆t

Fine-Fine

Physical BC

Coarse-Fine
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FillPatch Operation

To fill fine grid “ghost cells” at t+k∆tf ,

k = 0, ..., r−1, using coarse grid data

Define coarse patch needed for
interpolation

Fill coarse patch at time t and t + ∆tc

Time-interpolate data on coarse patch
to time t+k∆tf

Interpolate coarse data to fine patch
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Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface

Bell Lecture 1 – p. 11/22



Synchronization (p2)
How do we address these problems with the solution?

Average down the fine grid data onto all underlying coarse cells

Uc =
1

rd

∑
Uf

Reflux at coarse-fine interfaces

∆xc∆ycU
c = ∆xc∆ycU

c
− ∆tcAc

F
c +

∑
∆tfAf

F
f
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Regridding
Compute “error” at each cell : if “too big” then flag cell for refinement

Richardson extrapolation

Coarsen data on a patch at tn−1 and advance by 2∆t

Advance data at tn by ∆t and coarsen
Difference of these two solutions is proportional to error

Functions of solution (e.g., vorticity)

Geometric considerations
Compute refined patches as initially

Fill newly refined regions using conservative interpolation from coarse grid
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Summary of Algorithm
Hyperbolic AMR

For n = 1, ..., Nfinal

Advance(0,tn
0 )

Advance (`,t)
If (time to regrid) then

Regrid(`)

FillPatch(`,t)

Integrate(`,t,∆t`)

If (`<`finest) then
For isub = 1, ..., r`

Advance(`+1, t+(isub−1)∆t +̀1)
Average down(`,t+∆t`)
Reflux(`,t+∆t`)

End If

Regrid(`): generate new grids at levels `+1 and higher
FillPatch(`,t): fill patch of data at level ` and time t

Integrate(`,t,∆t): Advance data at level ` from t to t+∆t, averaging and storing fluxes at
boundaries of level ` grids if ` > 0 and level ` cells at boundary of ` + 1

Average down(`,t): average (in space) level `+1 data at time t to level `

Reflux(`,t): Add (time- and space-averaged) refluxing corrections to
level ` cells at time t adjacent to level `+1 grids
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Review of Data Operations
Single-level operations

Fill a patch with data from same-level grids

Fill data using physical boundary conditions

Interpolate data in time

Add corrections from stored fluxes at same resolution
Integrate patch of data in time

Find union of rectangles that contain a set of tagged points

Multi-level operations

Map regions between different levels of refinement

Interpolate : coarse → fine

Average : fine → coarse

Store fluxes from fine grid boundaries at coarse resolution
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Software / Parallel Implementation
Available software frameworks for hyperbolic AMR

BoxLib (LBNL)

Chombo (LBNL)

AMRClaw (UW)

SAMRAI (LLNL)

PARAMESH (NASA)

GRACE (Rutgers)

Data Structures

Support for Index space operations

Real data stored in FORTRAN-compatible form

Parallelization Strategy

Data distribution
Dynamic load balancing
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Data Structures
Index space

Box : a rectangular region in index space

BoxArray : a union of Boxes at a level

Real data at a level
FAB: FORTRAN-compatible data on a single box

– Data on a patch

MultiFAB: FORTRAN-compatible data on a union of rectangles
– Data at a level

FluxRegister: FORTRAN-compatible data on the border of a union of
rectangles

– Data for reflux correction (at coarse level resolution)
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Data Operations
Box calculus in C++:

compute intersection of patch with union of boxes

compute coarsening or refinement of patch coordinates

identify coarse grids underlying a given patch

Real data operations happen in FORTRAN on individual rectangular
regions, either grids in the BoxArray or temporary patches:

time integration of a patch of data

interpolation/averaging of a patch of data

filling of flux registers
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Parallel Data Distribution
AMR hierarchy represented by a BoxArray and MultiFAB at each level

Each processor contains the full BoxArray.
– Simplifies data-communications: send-and-forget

Data itself is distributed among processors; different resolutions are
distributed independently, separately load-balanced.

Owner computes rule on FAB data.

Efficient implementation
– Every MultiFAB with the same BoxArray has the same distribution
– Each processor keeps list of its grids nearest neighbors and their

processors
– Each processor keeps list of coarse grids and their processors

used to supply boundary conditions
– Messages are ganged: no more than one message is ever

exchanged between processors in an operation

Bell Lecture 1 – p. 19/22



Load Balance
AMR requires dynamic load-balancing.

Point-wise uniform work load: work proportional to the grid volume.

Dynamic programming approach based on the classic Knapsack
problem.

The LB problem as posed is NP, but a heuristic algorithm is provided
that finds a good, if not optimal solution.

Experience shows that good load-balance can be achieved with
about three grids per processor.
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Scaling Results for Hyperbolic Code

10 100 1000
Number of processors

10

100

1000
R

un
 T

im
e

16x16x16 SC45
32x32x32 SC45
64x64x64 SC45
32x32x32 IBM SP
64x64x64 IBM SP
128x128x128 IBM SP

Hyperbolic AMR Scaling

AMR using unsplit Godunov, 3 levels, factor of 4 refinement
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Shock–bubble interaction
Mach 1.25 shock in air interacting with a helium bubble

Domain 22.25 cm × 8.9 cm × 8.9 cm

Base grid 80 × 32 × 32

3 levels, r1 = 1, r2 = 4

Shock bubble
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